液晶的电光特性

主治白癜风疾病 http://pf.39.net/bdfyy/bdfjc/190506/7117848.html

液晶学是一门综合性的边缘学科,它涉及物理、化学、生物等多门基础学科。作为一种新材料,液晶愈来愈广泛地得到应用。作为一种凝聚态物质,液晶的特性与结构介于固态晶体与各向同性液体之间,是有序性的流体。从宏观物理性质看,它既具有液体的流动性、粘滞性,又具有晶体的各向异性,能像晶体一样,产生双折射、布拉格反射、衍射及旋光效应,也能在外场作用下,产生热光、电光或磁光效应。现在,液晶技术已被广泛应用于各个技术领域,例如在电子显示装置、化工的公害测定、高分子反应的定向聚合,航空机械及冶金产品的无损探伤和微波测定、医学上的皮癌检查,体温测量等方面。

液晶的电光特性

1.液晶的双折射现象

液晶的重要特性之一,就是像晶体那样,因折射率的各向异性而发生双折射现象。单轴晶体有两个不同的主折射率,分别为O光折射率n0,e光折射率ne,因折射率的各向异性,导致液晶的双折射性,从而呈现出许多有用的光学性质。如能使入射光的前进方向偏于分子长轴方向,能够改变入射光的偏振状态或方向,能使入射偏振光以左旋光或右旋光进行反射或透射,这些光学性质,都是液晶能作为显示材料应用的重要原因。

2.电控双折射效应

对液晶施加电场使液晶的排列方向发生变化,因此,按照一定的偏振方向入射的光,将在液晶中发生双折射的现象。

这一效应说明,液晶盒的光轴可以由外电场改变,光轴的倾斜随电场的变化而变化,因而两双折射光束间的位相差也随之变化,当入射光为复色光时,出射光的颜色也随之变化。因此液晶具有远比晶体灵活多变的电光性质。

3.动态散射

当在液晶盒两极上加电压驱动时,因电光效应,液晶将产生不稳定性,原来透明的液晶会出现一排排均匀的黑条纹,这些平行条纹彼此间隔数10微米,可以用作光栅。进一步提高电压,盒内不稳定性加强,出现湍流,从而产生强烈的光散射,透明的液晶变得混浊不透明了。断电后,液晶又恢复透明状态。这就是液晶的动态散射。它是由于液晶性质相反的介电性和导电性竞争的结果。如果其介电各向异性为负,在电场作用下要垂直于电场排列;若导电各向异性为正,则要沿着电场排列。在少量杂质的参与下,就出现了复杂的不稳定现象。液晶材料的动态散射是制造显示器件的重要依据。

4.旋光效应

在液晶盒中充入向列相液晶,把两玻璃片绕与它们互相垂直的轴相对扭转一个90°角度,这样向列相液晶的内部就发生了扭曲,于是形成一个具有扭曲排列的向列相液晶的液晶盒。在这样的液晶盒前后放置起偏振片和检偏振片,并使其偏振方向平行,在不施加电场时,一束白光射入,液晶盒使入射光的偏振光轴顺从液晶分子的扭曲而旋转90°。因而光进入检偏片时,由于偏振光轴互相垂直,光不能通过检偏片,液晶盒不透明,外视场呈暗态。增加外加电压,超过某一电压时,外视场呈亮态,由此可得黑底白像。若起偏片与检偏片的偏振方向互相垂直,可得白底黑像。

5.宾主效应

将二向色性染料掺入液晶中,并均匀混合起来,处在液晶分子中的染料分子将顺着液晶指向矢方向排列。在电压为零时,染料分子与液晶分子均平行基片排列,对可见光有一吸收峰,当电压达到某一值时,吸收峰值大为降低,使透射光的光谱发生变化。可见,用外加电场就能改变液晶盒的颜色,从而实现彩色显示。由于染料少,且以液晶方向为准,故为“宾”,液晶则为“主”,故得名“宾主”效应。

前面介绍的电控双折射、旋光效应等都可以实现彩色显示。实际上,几乎胆甾相液晶的所有性质都可以用来实现彩色显示。

液晶显示

按显示方式不同,可分为静态驱动和多路传输驱动的TN显示方式用液晶、DS显示方式用液晶。ECD显示方式用液晶及GH显示方式用液晶等。按用途不同,可分为需要宽工作温度和宽保存温度的显示元件用液晶、低电压工作显示元件用液晶、快速显示元件用液晶、广角可视显示元件用液晶以及温度影响很小的显示元件用液晶等。

一般使用的液晶显示器件,有段型和矩阵型两种。段型显示组装时将安有段电极基片和安有公共电极的电极基片相向放置,四周密封,组成一密封液晶盒。一般的液晶分子,具有按电极基片的表面状态排列取向的性质,液晶材料因其材料种类不同,而有一定的偶极矩。所以若在液晶显示器件的段电极和公共电极之间加上电压,则该部分由于电场的作用而会改变其液晶分子的排列状态。因此,欲使液晶分子的长轴对电极基片作平行、垂直或特定的方向排列,可在组装空盒容器之前,预先将电极基片的内表面进行化学的或物理的取向处理,然后,把液晶主件插在一对偏振片之间。若在段电极和公共电极之间给以电压,观察液晶显示器件的透射光,则由于液晶分子排列状态的变化,显示出或明或暗的图象。即无外加电场时,有光透射到显示暗的正像型图象,无光透射则显示亮的负像型图象。因此,适当地选择段电极和公共电极的形状,就可在一定程度上显示所要求的图象。

因液晶显示驱动电压低,仅几代即可,功耗极小。只有每平方米几瓦,且结构简单,重量轻,体积小。价格便宜,故应用极广,加上它的平板型外观,不被阳光冲刷,易于实现彩色显示,无辐射外泄等优点。此外,液晶显示与同一时期迅速发展的大规模集成电路,微型电池及其他微型电子元件相匹配,更是如虎添翼。

现在,液晶已广泛应用于电子显示器件,尤其液晶显示器件已控制了与它竞争的其他电子显示器件的市场。独占了手表和袖珍计算器等领域。最近已开始应用于各种计量仪器,家用电器,电子计算器和文字处理机等办公设备,以及摩托车和汽车上的液晶显示器件。可以预料,不久的将来,人们所期望看的液晶电视将得到普及,液晶显示器将会更进一步进入我们的生活。

液晶的应用

在液晶应用方面,很重要的一个技术,是如何控制在没有外界影响下,液晶分子的排列取向。为此,一般都使用液晶的薄层,这种薄层内的分子排列方式,对其光学性质有着很大的影响。依据上述介绍的液晶性质,在液晶应用领域中渴望在以下几个领域得到突破:

1.微温传感器:在施行水平取向处理的液晶盒中,向列型液晶和胆甾型液晶的混合物所形成的排列组织,是分子轴对于基片呈平行并顺次扭转的螺旋结构,而且其螺距随温度变化而发生显著变化,人们利用此现象制造出微温传感器。其原理为:探测器使液晶盒与被测物表面接触,偏振光被反射镜反射,经过液晶层、偏振片、光导纤维而返回。被测物体的表面温度若有变化,液晶分子排列的螺距即发生变化,偏振光的旋转角度也随之发生变化,因而返回光的强度也会发生变化。

2.压力传感器:胆甾型液晶当受到除温度、电场、磁场等以外的外部压力作用时,也能使其螺距发生变化,从而改变反射光的色相,制成压力传感器。有人尝试把此压力传感器安装在电话、电梯、信号铃等按钮的受压面上,以确认按钮是否接通。

3.超声波测量:若用超声波作用于液晶分子呈某种排列的液晶盒,可改变液晶分子的排列。利用该原理,可把超声波图象变换成可见图象,方法是:把超声波发生源和液晶盒安装在水中,并在二者之间放置试验片,则超声波被试验片挡住。在液晶盒面上将呈现对试验片进行投影的超声波象。因液晶盒上接受到超声波的那部分液晶分子排列会发生变化,于是获得了可见的超声波图象。

4.光通信用光路转换开关:在光导纤维通信系统中设置使液晶分子按某种方式排列的液晶盒,若对液晶盒施加电场。即可改变液晶分子的排列组织,进行光路转换。

5.光调制器:液晶分子呈均匀排列的向列型液晶或胆甾型液晶,都是光学单轴性物质,若对这些液晶施加电场或磁场。则液晶分子的取向组织将发生变化,引起光轴旋转;而若对液晶盒部分地施加电场或磁场,则液晶分子的取向组织将会变得不均匀,产生部分折射梯度。利用液晶的这种性质,可以制造光调制器。

另外,在空间调制器,焦距可变透镜,汽车上电显装置等也期望有所突破。科学工作者通过对液晶本身的折射率、抗磁化率、红外和紫外吸收的二向色性,以及核磁共振,X射线等方面的研究,确定了液晶的有序度等。但从化学观点出发,与研究液晶本身特性相媲美的内容是:把液晶作为溶剂,期望这方面有新的突破发展。

液晶学已成为一门新兴科学技术,广泛应用于当代各个工业部门。而且由于物质的液晶态结构普遍存在于生物体中,液晶结构及变化与生命现象之间的关系,也正在引起人们的重视。现在许多国家都先后建立了液晶科学的专门研究机构,制定了具体的研究规划和措施,对液晶领域进行全面研究。在显示技术方面,液晶显示技术预计在21世纪可能会赶上甚至超过普通的阴极射线管显示技术。到那时,现在使用的笨重的大彩电很可能会被壁挂式大屏幕液晶彩电所代替,液晶学科未来的发展在显示技术方面会有更大的进步。更重要的突破也许将会发生在液晶与生命系统的联系方面,全球的科学家正拭目以待。

预览时标签不可点收录于合集#个上一篇下一篇

转载请注明:http://www.abuoumao.com/hyfw/822.html

网站简介| 发布优势| 服务条款| 隐私保护| 广告合作| 网站地图| 版权申明

当前时间: 冀ICP备19029570号-7